دانلود مقاله ISI انگلیسی شماره 162032
ترجمه فارسی عنوان مقاله

یک روش عددی محدود چند منظوره بالا برای مدل سازی موج-زمان-دامنه آکوستیک

عنوان انگلیسی
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
162032 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Physics, Volume 360, 1 May 2018, Pages 120-136

ترجمه کلمات کلیدی
معادله موج آکوستیک، روش چند منظوره، روش عنصر محدود روش عنصر طیفی، محیط ناهمگن،
کلمات کلیدی انگلیسی
Acoustic-wave equation; Multiscale method; Finite-element method; Spectral-element method; Heterogeneous medium;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش عددی محدود چند منظوره بالا برای مدل سازی موج-زمان-دامنه آکوستیک

چکیده انگلیسی

Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.