دانلود مقاله ISI انگلیسی شماره 162070
ترجمه فارسی عنوان مقاله

مدل ریاضی جدید برای مساله مسیریابی موجودی دو هدف با یک تابع هزینه گام: یک راه حل بهینه سازی ذرات چند هدفه

عنوان انگلیسی
New mathematical model for the bi-objective inventory routing problem with a step cost function: A multi-objective particle swarm optimization solution approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
162070 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 49, September 2017, Pages 302-318

ترجمه کلمات کلیدی
روش محدود محدودیت محدود، سیستم توزیع، مشکل مسیریابی موجودی بهینه سازی ذرات چند هدفه، عملکرد هزینه گام
کلمات کلیدی انگلیسی
Augmented ε-constraint method; Distribution system; Inventory routing problem; Multi-objective particle swarm optimization; Step cost function;
پیش نمایش مقاله
پیش نمایش مقاله  مدل ریاضی جدید برای مساله مسیریابی موجودی دو هدف با یک تابع هزینه گام: یک راه حل بهینه سازی ذرات چند هدفه

چکیده انگلیسی

Inventory management and satisfactory distribution are among the most important issues considered by distribution companies. One of the key objectives is the simultaneous optimization of the inventory costs and distribution expenses, which can be addressed according to the inventory routing problem (IRP). In this study, we present a new transport cost calculation pattern for the IRP based on some real cases. In this pattern, the transportation cost is calculated as a function of the load carried and the distance traveled by the vehicle based on a step cost function. Furthermore, previous methods usually aggregate the inventory and transportation costs to formulate them as a single objective function, but in non-cooperative real-life cases, the inventory-holding costs are paid by retailers whereas the transportation-related costs are paid by the distributor. In this study, we separate these two cost elements and introduce a bi-objective IRP formulation where the first objective is to minimize the inventory-holding cost and the second is minimizing the transportation cost. We also propose an efficient particle representation and employ a multi-objective particle swarm optimization algorithm to generate the non-dominated solutions for the inventory allocation and vehicle routing decisions. Finally, in order to evaluate the performance of the proposed algorithm, the results obtained were compared with those produced using the augmented ε-constraint method, thereby demonstrating the practical utility of the proposed multi-objective model and the proposed solution algorithm.