دانلود مقاله ISI انگلیسی شماره 43078
ترجمه فارسی عنوان مقاله

مدل شبیه سازی مبتنی بر موجودی برای تخصیص حمل و نقل زمانمند از سالانه به روزانه

عنوان انگلیسی
An inventory-based simulation model for annual-to-daily temporal freight assignment
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43078 2015 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part E: Logistics and Transportation Review, Volume 79, July 2015, Pages 83–101

ترجمه کلمات کلیدی
پیش بینی حمل و نقل - مدل تقاضا - انتساب زمانی - شبیه سازی شرکت - مقدار سفارش اقتصادی - شبکه های زنجیره تامین
کلمات کلیدی انگلیسی
Freight forecasting; Demand model; Temporal assignment; Firm simulation; Economic order quantity; Supply chain networks
پیش نمایش مقاله
پیش نمایش مقاله  مدل شبیه سازی مبتنی بر موجودی برای تخصیص حمل و نقل زمانمند از سالانه به روزانه

چکیده انگلیسی

In the aggregate freight demand modeling literature, temporal assignment (annual to daily flows) is often oversimplified or neglected altogether. Unlike passenger flows, freight flows over the course of a year are not uniform and can vary significantly as the result of trade-offs between inventory and transportation cost management. We introduce the first temporal assignment model that explicitly considers these trade-offs for aggregate freight forecasting. A two-stage model is proposed that first decomposes aggregate annual zonal flows to firm group annual flows using a supply chain network model, which are then temporally assigned by simulating purchase order transactions throughout supply chains. Lot sizes are estimated with an Economic Order Quantity (EOQ) model and calibrated with monthly inventory data. The result is an aggregate-disaggregate-aggregate model that fits into aggregate freight forecasting models but makes use of more disaggregate logistical data. The model is illustrated with a simple replicable example, followed by a case study conducted with California statewide data to break out the distributed zonal flows into average daily volumes for network assignment. Calibration results using 2007 IMPLAN data showed a median percentage difference of simulated annual flows from FAF3 data of 2.38%, and a median percentage difference of simulated inventories from IMPLAN data of 4.85%, which suggests an excellent fit. Empirical validation results showed the model outperforms fixed factor approaches in mean value accuracy by 15–31%.