دانلود مقاله ISI انگلیسی شماره 43226
ترجمه فارسی عنوان مقاله

بهینه سازی سلسله مراتبی مؤثر با استفاده از الگوریتم ژنتیک رقابتی سلسله مراتبی چندفضایی برای مشکل برنامه ریزی تولید کارگاهی انعطاف پذیر

عنوان انگلیسی
Effective hierarchical optimization by a hierarchical multi-space competitive genetic algorithm for the flexible job-shop scheduling problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43226 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 24, 30 December 2015, Pages 9434–9440

ترجمه کلمات کلیدی
فضای راه حل های متعدد - رقابت فضایی راه حل - الگوریتم ژنتیک - بهینه سازی سلسله مراتبی - مشکل برنامه ریزی تولید کارگاهی انعطاف پذیر
کلمات کلیدی انگلیسی
Multiple solution space; Solution space competition; Genetic algorithm; Hierarchical optimization; Flexible job-shop scheduling problem
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی سلسله مراتبی مؤثر با استفاده از الگوریتم ژنتیک رقابتی سلسله مراتبی چندفضایی برای مشکل برنامه ریزی تولید کارگاهی انعطاف پذیر

چکیده انگلیسی

In this paper, we propose a new optimization technique, the hierarchical multi-space competitive distributed genetic algorithm (HmcDGA), which is effective for the hierarchical optimization problem. It is an extension of the multi-space competitive distributed genetic algorithm (mcDGA), which was proposed by the authors. The mcDGA efficiently finds an optimal solution with a low computational cost by increasing the number of individuals in a solution space in which it is likely to exist. An optimization method that is divided into several levels of hierarchy is called a hierarchical optimization. Several hierarchical optimization techniques have been proposed, including the hierarchical genetic algorithm (HGA). In hierarchical optimization, a complex problem is divided into a hierarchical collection of simpler problems, and each level is optimized independently. In this way, complex problems can be solved without the need to develop problem-specific operators. However, in the conventional HGA, this results in a high computational cost because the genetic algorithm (GA) is repeated many times at upper and lower level. The HmcDGA is a hybrid of the mcDGA and HGA, and it has some of the advantages of each one; for example, the HmcDGA can find an optimal solution at low computational cost and without requiring special operations. This allows it to be applied to a wide variety of optimization problems. Therefore, the HmcDGA may become the powerful optimization algorithm that can solve various problems. In this paper, we apply the proposed HmcDGA to the flexible job-shop scheduling problem (FJSP) which is one of the complex combinational optimization problem and confirm its effectiveness. Simulation results show that the HmcDGA can find solutions that are comparable to those found by using GAs developed specifically for the FJSP, the HmcDGA is not required a lot of computational costs comparing to the HGA.