دانلود مقاله ISI انگلیسی شماره 86905
ترجمه فارسی عنوان مقاله

بهینه سازی کل مصرف انرژی از طریق الگوریتم ژنتیک در سیستم های تولید انعطاف پذیر

عنوان انگلیسی
Total energy consumption optimization via genetic algorithm in flexible manufacturing systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
86905 2017 38 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 104, February 2017, Pages 188-200

ترجمه کلمات کلیدی
سیستم تولید انعطاف پذیر، الگوریتم ژنتیک، شبکه پتری، بهینه سازی کل مصرف انرژی، برنامه ریزی،
کلمات کلیدی انگلیسی
Flexible manufacturing system; Genetic algorithm; Petri net; Total energy consumption optimization; Scheduling;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی کل مصرف انرژی از طریق الگوریتم ژنتیک در سیستم های تولید انعطاف پذیر

چکیده انگلیسی

In recent years, there has been growing interest in reducing energy consumption and emissions of manufacturing systems. Except for adopting new equipment or techniques, scheduling is crucial to reduce the total energy consumption of manufacturing systems. This paper focuses on the scheduling problem for flexible manufacturing systems (FMSs) with the objective of minimizing the total energy consumption, and proposes a novel scheduling algorithm for FMSs based on Petri net models and genetic algorithm. Considering that energy consumptions in different states of resources are different, this paper takes two ways for calculating total energy consumptions. In the proposed genetic algorithm, a potential schedule is represented by a chromosome consisting of route selection and operation sequence. Crossover and mutation operations are performed on the operation sequence to guarantee the population diversity. For deadlock-prone FMSs, not all chromosomes can be directly decoded to a feasible schedule. To check the feasibility of chromosomes and convert infeasible chromosomes into feasible ones, a repair algorithm is developed with the help of the deadlock avoidance policy. Experiment results on a typical FMS and an industrial stamping system are provided to show the effectiveness of our proposed scheduling algorithm.