دانلود مقاله ISI انگلیسی شماره 89646
ترجمه فارسی عنوان مقاله

به حداقل رساندن زمان هدایت متوسط ​​برای مشکل زمانبندی هماهنگ در زنجیره تامین دو مرحله ای با مشتریان متعدد و تولید کنندگان چندگانه

عنوان انگلیسی
Minimizing average lead time for the coordinated scheduling problem in a two-stage supply chain with multiple customers and multiple manufacturers
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89646 2017 44 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 114, December 2017, Pages 244-257

ترجمه کلمات کلیدی
برنامه ریزی زنجیره تامین دو مرحله ای، الگوریتم کلونی زنبور عسل مصنوعی، الگوریتم آنیلینگ شبیه سازی شده، مکانیسم های بارگیری، زمان سربسته،
کلمات کلیدی انگلیسی
Two-stage supply chain scheduling; Artificial bee colony algorithm; Simulated annealing algorithm; Batching mechanisms; Average lead time;
پیش نمایش مقاله
پیش نمایش مقاله  به حداقل رساندن زمان هدایت متوسط ​​برای مشکل زمانبندی هماهنگ در زنجیره تامین دو مرحله ای با مشتریان متعدد و تولید کنندگان چندگانه

چکیده انگلیسی

In this study, the two-stage supply chain scheduling problem with multiple customers and multiple manufacturers is considered. The first stage consists of m manufacturers (suppliers), while the second stage contains q vehicles, each of which distributes the batches from the manufacturers to the customers. Multiple customers and average lead time are two most important issues in practice; however, no study has been carried out so far to investigate these two issues together for the two-stage supply chain scheduling problem. The main contribution of this study is to coordinate production and distribution decisions to obtain an effective scheduling in a two-stage supply chain that contains multiple customers and multiple manufacturers. A mixed integer linear optimization model is developed to formulate the problem with the average lead time objective. Because the problem has been shown to be NP-hard, a hybrid artificial bee colony and simulated annealing (HABCSA) algorithm is introduced and used to solve the problem. In addition, a lower bound (LB) and several structural properties for the problem are presented and different batching mechanisms are developed based on these properties. For the purpose of performance analysis of HABCSA with different batching mechanisms, detailed computational experiments are conducted using random instances which are generated based on real aluminum production data for different capacity levels. The experimental results indicate that the HABCSA heuristic consistently outperforms the Genetic Algorithm (GA) and the Artificial Bee Colony (ABC) algorithm for each capacity level.