دانلود مقاله ISI انگلیسی شماره 95667
ترجمه فارسی عنوان مقاله

مدل سازی مبتنی بر عامل شبیه سازی توسعه: یک زبان مدل سازی و ارزیابی تجربی در دامنه کنترل ترافیک تطبیقی

عنوان انگلیسی
Model-driven agent-based simulation development: A modeling language and empirical evaluation in the adaptive traffic signal control domain
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95667 2018 26 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Simulation Modelling Practice and Theory, Volume 83, April 2018, Pages 162-187

ترجمه کلمات کلیدی
مدل سازی و شبیه سازی مبتنی بر عامل، توسعه مدل رانده شده، تلاش برای توسعه، کنترل سیگنال ترافیک
کلمات کلیدی انگلیسی
Agent-based modeling and simulation; Model-driven development; Development effort; Traffic signal control;
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی مبتنی بر عامل شبیه سازی توسعه: یک زبان مدل سازی و ارزیابی تجربی در دامنه کنترل ترافیک تطبیقی

چکیده انگلیسی

Model-driven development (MDD) is an approach for supporting the development of software systems, in which high-level modeling artifacts drive the production of time and effort-consuming low-level artifacts, such as the source code. Previous studies of the MDD effectiveness showed that it significantly increases development productivity, because the development effort is focused on the business domain rather than technical issues. However, MDD was exploited in the context of agent-based development in a limited way, and most of the existing proposals demonstrated the effectiveness of using MDD in this context by argumentation or examples, lacking disciplined empirical analyses. In this paper, we explore the use of MDD for agent-based modeling and simulation in the adaptive traffic signal control (ATSC) domain, in which autonomous agents are in charge of managing traffic light indicators to optimize traffic flow. We propose an MDD approach, composed of a modeling language and model-to-code transformations for producing runnable simulations automatically. In order to analyze the productivity gains of our MDD approach, we compared the amount of design and implementation artifacts produced using our approach and traditional simulation platforms. Results indicate that our approach reduces the workload to develop agent-based simulations in the ATSC domain.