دانلود مقاله ISI انگلیسی شماره 95735
ترجمه فارسی عنوان مقاله

یک روش میانگین محاسبه بیزی پویایی برای تلفیق تخلیه با استفاده از چندین مدل بارش جهانی و مدل های هیدرولوژیکی

عنوان انگلیسی
An ensemble-based dynamic Bayesian averaging approach for discharge simulations using multiple global precipitation products and hydrological models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95735 2018 59 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydrology, Volume 558, March 2018, Pages 405-420

ترجمه کلمات کلیدی
شبیه سازی گروهی، مدل سازی هیدرولوژیکی، بارش باران ماهواره ای، عدم قطعیت، منابع آبی،
کلمات کلیدی انگلیسی
Ensemble simulation; Hydrological modelling; Satellite precipitation products; Uncertainty; Water resources;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش میانگین محاسبه بیزی پویایی برای تلفیق تخلیه با استفاده از چندین مدل بارش جهانی و مدل های هیدرولوژیکی

چکیده انگلیسی

Global precipitation products are very important datasets in flow simulations, especially in poorly gauged regions. Uncertainties resulting from precipitation products, hydrological models and their combinations vary with time and data magnitude, and undermine their application to flow simulations. However, previous studies have not quantified these uncertainties individually and explicitly. This study developed an ensemble-based dynamic Bayesian averaging approach (e-Bay) for deterministic discharge simulations using multiple global precipitation products and hydrological models. In this approach, the joint probability of precipitation products and hydrological models being correct is quantified based on uncertainties in maximum and mean estimation, posterior probability is quantified as functions of the magnitude and timing of discharges, and the law of total probability is implemented to calculate expected discharges. Six global fine-resolution precipitation products and two hydrological models of different complexities are included in an illustrative application. e-Bay can effectively quantify uncertainties and therefore generate better deterministic discharges than traditional approaches (weighted average methods with equal and varying weights and maximum likelihood approach). The mean Nash-Sutcliffe Efficiency values of e-Bay are up to 0.97 and 0.85 in training and validation periods respectively, which are at least 0.06 and 0.13 higher than traditional approaches. In addition, with increased training data, assessment criteria values of e-Bay show smaller fluctuations than traditional approaches and its performance becomes outstanding. The proposed e-Bay approach bridges the gap between global precipitation products and their pragmatic applications to discharge simulations, and is beneficial to water resources management in ungauged or poorly gauged regions across the world.