دانلود مقاله ISI انگلیسی شماره 139838
ترجمه فارسی عنوان مقاله

بهینه سازی هزینه های سیستم های ذخیره سازی جغرافیایی در شبکه های اجتماعی آنلاین

عنوان انگلیسی
Optimizing cost for geo-distributed storage systems in online social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
139838 2017 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Science, Available online 12 August 2017

ترجمه کلمات کلیدی
شبکه های اجتماعی آنلاین، بهینه سازی هزینه، ترافیک مرکز داده ها، ذخیره سازی، سیستم های ذخیره سازی جغرافیایی،
کلمات کلیدی انگلیسی
Online social networks; Cost optimization; Inter-data center traffic; Storage; Geo-distributed storage systems;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی هزینه های سیستم های ذخیره سازی جغرافیایی در شبکه های اجتماعی آنلاین

چکیده انگلیسی

Globally distributed data centers provide an opportunity to deploy geo-distributed Online Social Networks (OSNs). For so big data generated by users, how to store them among those data centers is a key issue in the geo-distributed storage system. Today's popular OSN providers store users’ data in each deployed data center, so as to guarantee access latency. However, the full replication manner brings relatively high storage cost and traffic cost, which extremely increases the economic expenditure of OSN providers. Data placement based on social graph partitioning is an efficient way to minimize cost, but it requires the information of entire social graph and cannot fully guarantee latency. Recently, accomplished by partitioning replication is proposed to optimize cost as well as guarantee latency, but it has two drawbacks: (1) the separated manners of optimization cannot efficiently reduce the cost; (2) the placement of master replicas and slave replicas influence each other, and eventually reduces the optimization effects. In this paper, we explore an integrated manner of optimizing partitioning and replication simultaneously without distinguishing replica's role. We propose a lightweight replica placement (LRP) scheme, which conducts optimizations in a distributed manner and is well adapted to dynamic scenarios. Evaluations with two datasets from Twitter and Facebook show that LRP significantly reduces the cost compared with state-of-the-art schemes.