دانلود مقاله ISI انگلیسی شماره 161305
ترجمه فارسی عنوان مقاله

مدیریت هوشمندانه از ذخایر زغال سنگ با استفاده از مدل های پیش بینی شده احتراق خود به خودی بهبود یافته خاکستری

عنوان انگلیسی
Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
161305 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy, Volume 132, 1 August 2017, Pages 269-279

ترجمه کلمات کلیدی
مدیریت زغال سنگ، پیشگیری از احتراق خود به خودی، مدل خاکستری الگوریتم بهینه سازی،
کلمات کلیدی انگلیسی
Coal management; Spontaneous combustion prevention; Grey model; Optimization algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  مدیریت هوشمندانه از ذخایر زغال سنگ با استفاده از مدل های پیش بینی شده احتراق خود به خودی بهبود یافته خاکستری

چکیده انگلیسی

Intelligent coal stockpiles management system is significant for the next-generation cleaner power plants. Prevention of spontaneous combustion is a key issue for such a system, both in economic and environmental terms. As many factors can influence the self heating process of coal such as moisture and ash in coal, temperature distribution and stockpiles' shapes, the remaining ignition time is developed as an aggregative indicator to measure the tendencies of spontaneous coal combustion. Using this value, the grey models have been applied to forecast spontaneous combustion and their performances are good for systems with insufficient information. However, the forecasting accuracy of these models still needs to be improved. Therefore, the ABC-RGM(1,1) model is proposed in this work based on the rolling-GM(1,1) and the Artificial Bee Colony (ABC) optimization algorithm, which has been applied to the management system of a 4 × 600 MW power plant. The computational experiments show that the ABC-RGM(1,1) model achieves better performance than the other popular grey models and accuracy of forecast is greatly improved especially for short-term forecasts. Such an accurate model is highly important and useful for intelligent coal management systems which can improve decision making and reduce risk.