دانلود مقاله ISI انگلیسی شماره 162107
ترجمه فارسی عنوان مقاله

روش الگوریتم ژنتیک برای تشکیل سلول های دستگاه با مسیرهای جایگزین

عنوان انگلیسی
Genetic Algorithm approach for Machine Cell Formation with Alternative Routings
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
162107 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Materials Today: Proceedings, Volume 5, Issue 1, Part 1, 2018, Pages 1766-1775

ترجمه کلمات کلیدی
سیستم تولید سلولی، الگوریتم ژنتیک، مسیرهای جایگزین فرآیند، حرکت بین سلولی قطعات بهترین انتخاب مسیر
کلمات کلیدی انگلیسی
Cellular manufacturing system; Genetic algorithm; Alternative process routings; Intercellular movement of parts; Best route selection;
پیش نمایش مقاله
پیش نمایش مقاله  روش الگوریتم ژنتیک برای تشکیل سلول های دستگاه با مسیرهای جایگزین

چکیده انگلیسی

In cellular manufacturing systems, study and optimization of machine cell formation (CF) problems have long drawn attention of researchers. Optimum CF results in reduction of overall processing time, material handling cost, labor cost, in-process inventories and number of set-ups requirements. Also, it simplifies process plans and improves product quality. Since the modern manufacturing machines in a cell are generally multifunctional, the processing of parts are performed following alternative processing routes. The objective of study is to determine the optimal alternative processing route in order to minimize the total intercellular movements of parts in CF problems. Intercellular movements of parts depend on many factors such as parts volume including batch size and number of batches, sequence of processes and routes of production. In this paper, a genetic algorithm heuristic is presented for the CF problem with multiple process routes, sequence of processes and parts volume. Computational experimentation was performed with five benchmark problems. The results demonstrate that the performance of the proposed approach in terms of total intercellular movements of parts and best route selection are either better or competitive with the well-known existing methods.