دانلود مقاله ISI انگلیسی شماره 162153
ترجمه فارسی عنوان مقاله

بازسازی توزیع نمونه برای یادگیری داده های کوچک

عنوان انگلیسی
Rebuilding sample distributions for small dataset learning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
162153 2018 38 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 105, January 2018, Pages 66-76

ترجمه کلمات کلیدی
داده های کوچک، نمونه مجازی، پیش پردازش اطلاعات،
کلمات کلیدی انگلیسی
Small data; Virtual sample; Data preprocessing;
پیش نمایش مقاله
پیش نمایش مقاله  بازسازی توزیع نمونه برای یادگیری داده های کوچک

چکیده انگلیسی

Over the past few decades, a few learning algorithms have been proposed to extract knowledge from data. The majority of these algorithms have been developed with the assumption that training sets can denote populations. When the training sets contain only a few properties of their populations, the algorithms may extract minimal and/or biased knowledge for decision makers. This study develops a systematic procedure based on fuzzy theories to create new training sets by rebuilding the possible sample distributions, where the procedure contains new functions that estimate domains and a sample generating method. In this study, two real cases of a leading company in the thin film transistor liquid crystal display (TFT-LCD) industry are examined. Two learning algorithms—a back-propagation neural network and support vector regression—are employed for modeling, and two sample generation approaches—bootstrap aggregating (bagging) and the synthetic minority over-sampling technique (SMOTE)—are employed to compare the accuracy of the models. The results indicate that the proposed method outperforms bagging and the SMOTE with the greatest amount of statistical support.