دانلود مقاله ISI انگلیسی شماره 43664
ترجمه فارسی عنوان مقاله

فن آوری هوشمند ترکیبی مبتنی بر مشتقه برای زمان پیوسته بهینه سازی شبیه سازی

عنوان انگلیسی
Derivative-based hybrid heuristics for continuous-time simulation optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43664 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Simulation Modelling Practice and Theory, Volume 46, August 2014, Pages 164–175

ترجمه کلمات کلیدی
فن آوری هوشمند هیبرید - روش های بهینه سازی مبتنی بر مشتق - معادلات جبری دیفرانسیل - زبان مدل سازی -
کلمات کلیدی انگلیسی
Hybrid heuristics; Derivative-based optimization methods; Differential algebraic equations; Modeling languages; Modelica
پیش نمایش مقاله
پیش نمایش مقاله  فن آوری هوشمند ترکیبی مبتنی بر مشتقه برای زمان پیوسته بهینه سازی شبیه سازی

چکیده انگلیسی

The topic of simulation–optimization has not been fundamentally tackled by many continuous-time modeling and simulation tools, yet. Common simulation-based optimization problems are usually coupled with standard optimization algorithms like any other simulation-free nonlinear optimization problems. While such couplings are usually based on many state-of-the-art software engineering concepts with a high-level user interface for flexible incorporation of simulation and optimization, the design of specialized optimization strategies targeting simulation-based objective functions is lacked within many simulation–optimization tools. In this work, new redefinition of Non Linear Programming (NLP) problems in the context of continuous-time simulation optimization is presented. Then, the modified optimization problems are efficiently tackled using derivative-based hybrid heuristics. In order to specify, illustrate and implement such heuristics, a new terminology is proposed. According to the proposed terminology, derivative-based hybrid strategies are implemented by hybridizing naive multistart derivative-based optimization methods with population-based metaheuristics. It is shown that the adoption of derivative-based optimization methods within hybrid optimization strategies significantly improves the solution quality of continuous-time simulation optimization problems.