دانلود مقاله ISI انگلیسی شماره 43743
ترجمه فارسی عنوان مقاله

یک مدل شبیه سازی - بهینه سازی پویا برای مدیریت تطبیقی سیستم توزیع آب شهری تهدید آلودگی

عنوان انگلیسی
A dynamic simulation–optimization model for adaptive management of urban water distribution system contamination threats
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43743 2015 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 32, July 2015, Pages 59–71

ترجمه کلمات کلیدی
محاسبات تکاملی - سیستم توزیع آب - آلوده شدن - دینامیک سیستم - بهینه سازی پویا - مدیریت اضطراری
کلمات کلیدی انگلیسی
Evolutionary computations; Water distribution system; Contamination; System dynamics; Dynamic optimization; Emergency management
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل شبیه سازی - بهینه سازی پویا برای مدیریت تطبیقی سیستم توزیع آب شهری تهدید آلودگی

چکیده انگلیسی

Urban water distribution systems hold a critical and strategic position in preserving public health and industrial growth. Despite the ubiquity of these urban systems, aging infrastructure, and increased risk of terrorism, decision support models for a timely and adaptive contamination emergency response still remain at an undeveloped stage. Emergency response is characterized as a progressive, interactive, and adaptive process that involves parallel activities of processing streaming information and executing response actions. This study develops a dynamic decision support model that adaptively simulates the time-varying emergency environment and tracks changing best health protection response measures at every stage of an emergency in real-time. Feedback mechanisms between the contaminated network, emergency managers, and consumers are incorporated in a dynamic simulation model to capture time-varying characteristics of an emergency environment. An evolutionary-computation-based dynamic optimization model is developed to adaptively identify time-dependant optimal health protection measures during an emergency. This dynamic simulation–optimization model treats perceived contaminant source attributes as time-varying parameters to account for perceived contamination source updates as more data stream in over time. Performance of the developed dynamic decision support model is analyzed and demonstrated using a mid-size virtual city that resembles the dynamics and complexity of real-world urban systems. This adaptive emergency response optimization model is intended to be a major component of an all-inclusive cyberinfrastructure for efficient contamination threat management, which is currently under development.