دانلود مقاله ISI انگلیسی شماره 50509
ترجمه فارسی عنوان مقاله

کنترل پیش بینی مدل غیر متمرکز و متمرکز به منظور کاهش اثر شلاقی در مدیریت زنجیره تامین

عنوان انگلیسی
Decentralized and centralized model predictive control to reduce the bullwhip effect in supply chain management ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
50509 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Industrial Engineering, Volume 73, July 2014, Pages 21–31

ترجمه کلمات کلیدی
کنترل پیش بینی مدل - مدیریت زنجیره تامین - بهینه سازی - اثر شلاقی
کلمات کلیدی انگلیسی
Model predictive control; Supply chain management; Optimization; Bullwhip effect
پیش نمایش مقاله
پیش نمایش مقاله  کنترل پیش بینی مدل غیر متمرکز و متمرکز به منظور کاهش اثر شلاقی در مدیریت زنجیره تامین

چکیده انگلیسی

Mitigating the bullwhip effect is one of crucial problems in supply chain management. In this research, centralized and decentralized model predictive control strategies are applied to control inventory positions and to reduce the bullwhip effect in a benchmark four-echelon supply chain. The supply chain under consideration is described by discrete dynamic models characterized by balance equations on product and information flows with an ordering policy serving as the control schemes. In the decentralized control strategy, a MPC-EPSAC (Extended Prediction Self-Adaptive Control) approach is used to predict the changes in the inventory position levels. A closed-form solution of an optimal ordering decision for each echelon is obtained by locally minimizing a cost function, which consists of the errors between predicted inventory position levels and their setpoints, and a weighting function that penalizes orders. The single model predictive controller used in centralized control strategy optimizes globally and finds an optimal ordering policy for each echelon. The controller relies on a linear discrete-time state-space model to predict system outputs. But the predictions are approached by either of two multi-step predictors depending on whether the states of the controller model are directly observed or not. The objective function takes a quadratic form and thus the resulting optimization problem can be solved via standard quadratic programming method. The comparisons on performances of the two MPC strategies are illustrated with a numerical example.