دانلود مقاله ISI انگلیسی شماره 50523
ترجمه فارسی عنوان مقاله

یک روش پیش بینی تقاضای بهبودیافته برای کاهش اثر شلاقی در زنجیره تامین

عنوان انگلیسی
An improved demand forecasting method to reduce bullwhip effect in supply chains
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
50523 2014 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 5, April 2014, Pages 2395–2408

ترجمه کلمات کلیدی
مدیریت زنجیره تامین - عدم اطمینان زنجیره تامین - اثر شلاقی - خودرگرسیو مجتمع میانگین متحرک (ARIMA) - تبدیل موجک گسسته - شبکه های عصبی مصنوعی
کلمات کلیدی انگلیسی
Supply chain management; Supply chain uncertainty; Bullwhip effect; Autoregressive Integrated Moving Average (ARIMA); Discrete wavelet transforms; Artificial neural networks
پیش نمایش مقاله
پیش نمایش مقاله  یک روش پیش بینی تقاضای بهبودیافته برای کاهش اثر شلاقی در زنجیره تامین

چکیده انگلیسی

Accurate forecasting of demand under uncertain environment is one of the vital tasks for improving supply chain activities because order amplification or bullwhip effect (BWE) and net stock amplification (NSAmp) are directly related to the way the demand is forecasted. Improper demand forecasting results in increase in total supply chain cost including shortage cost and backorder cost. However, these issues can be resolved to some extent through a proper demand forecasting mechanism. In this study, an integrated approach of Discrete wavelet transforms (DWT) analysis and artificial neural network (ANN) denoted as DWT-ANN is proposed for demand forecasting. Initially, the proposed model is tested and validated by conducting a comparative study between Autoregressive Integrated Moving Average (ARIMA) and proposed DWT-ANN model using a data set from open literature. Further, the model is tested with demand data collected from three different manufacturing firms. The analysis indicates that the mean square error (MSE) of DWT-ANN is comparatively less than that of the ARIMA model. A better forecasting model generally results in reduction of BWE. Therefore, BWE and NSAmp values are estimated using a base-stock inventory control policy for both DWT-ANN and ARIMA models. It is observed that these parameters are comparatively less in case of DWT-ANN model.