دانلود مقاله ISI انگلیسی شماره 88478
ترجمه فارسی عنوان مقاله

یک مدل بهینه سازی دو جانبه برای مدیریت کیفیت هوا در سیستم پکن و یک سیستم انرژی در زیر عدم اطمینان

عنوان انگلیسی
An integrated bi-level optimization model for air quality management of Beijing’s energy system under uncertainty
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
88478 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hazardous Materials, Volume 350, 15 May 2018, Pages 27-37

ترجمه کلمات کلیدی
کیفیت هوا، برنامه نویسی سطحی، تصمیم سازی، سیستم های انرژی و محیط زیست، عدم قطعیت،
کلمات کلیدی انگلیسی
Air quality; Bi-level programming; Decision making; Energy and environmental systems; Uncertainty;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل بهینه سازی دو جانبه برای مدیریت کیفیت هوا در سیستم پکن و یک سیستم انرژی در زیر عدم اطمینان

چکیده انگلیسی

In this study, an interval chance-constrained bi-level programming (ICBP) method is developed for air quality management of municipal energy system under uncertainty. ICBP can deal with uncertainties presented as interval values and probability distributions as well as examine the risk of violating constraints. Besides, a leader-follower decision strategy is incorporated into the optimization process where two decision makers with different goals and preferences are involved. To solve the proposed model, a bi-level interactive algorithm based on satisfactory degree is introduced into the decision-making processes. Then, an ICBP based energy and environmental systems (ICBP-EES) model is formulated for Beijing, in which air quality index (AQI) is used for evaluating the integrated air quality of multiple pollutants. Result analysis can help different stakeholders adjust their tolerances to achieve the overall satisfaction of EES planning for the study city. Results reveal that natural gas is the main source for electricity-generation and heating that could lead to a potentially increment of imported energy for Beijing in future. Results also disclose that PM10 is the major contributor to AQI. These findings can help decision makers to identify desired alternatives for EES planning and provide useful information for regional air quality management under uncertainty.