دانلود مقاله ISI انگلیسی شماره 89775
ترجمه فارسی عنوان مقاله

روش های یادگیری ماشین برای تخمین مصرف انرژی ساختمان تجاری

عنوان انگلیسی
Machine learning approaches for estimating commercial building energy consumption
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89775 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 208, 15 December 2017, Pages 889-904

پیش نمایش مقاله
پیش نمایش مقاله  روش های یادگیری ماشین برای تخمین مصرف انرژی ساختمان تجاری

چکیده انگلیسی

Building energy consumption makes up 40% of the total energy consumption in the United States. Given that energy consumption in buildings is influenced by aspects of urban form such as density and floor-area-ratios (FAR), understanding the distribution of energy intensities is critical for city planners. This paper presents a novel technique for estimating commercial building energy consumption from a small number of building features by training machine learning models on national data from the Commercial Buildings Energy Consumption Survey (CBECS). Our results show that gradient boosting regression models perform the best at predicting commercial building energy consumption, and can make predictions that are on average within a factor of 2 from the true energy consumption values (with an r2 score of 0.82). We validate our models using the New York City Local Law 84 energy consumption dataset, then apply them to the city of Atlanta to create aggregate energy consumption estimates. In general, the models developed only depend on five commonly accessible building and climate features, and can therefore be applied to diverse metropolitan areas in the United States and to other countries through replication of our methodology.