دانلود مقاله ISI انگلیسی شماره 92123
ترجمه فارسی عنوان مقاله

طبقه بندی سریع فیله های سینه مرغ نابجا با پیش بینی مولفه های اصلی مولفه های کیفیت با طیف سنجی قابل مشاهده / نزدیک به مادون قرمز

عنوان انگلیسی
Rapid classification of intact chicken breast fillets by predicting principal component score of quality traits with visible/near-Infrared spectroscopy
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92123 2018 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Food Chemistry, Volume 244, 1 April 2018, Pages 184-189

پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی سریع فیله های سینه مرغ نابجا با پیش بینی مولفه های اصلی مولفه های کیفیت با طیف سنجی قابل مشاهده / نزدیک به مادون قرمز

چکیده انگلیسی

In this study visible/near-infrared spectroscopy (Vis/NIRS) was evaluated to rapidly classify intact chicken breast fillets. Five principal components (PC) were extracted from reference quality traits (L∗, pH, drip loss, expressible fluid, and salt-induced water gain). A quality grades classification method by PC1 score was proposed. With this method, 150 chicken fillets were properly classified into three quality grades, i.e., DFD (dark, firm and dry), normal, and PSE (pale, soft and exudative). Furthermore, PC1 score could be predicted using partial least squares regression (PLSR) model based on Vis/NIRS (R2p = 0.78, RPD = 1.9), without the measurement of any quality traits. Thresholds of PC1 classification method were applied to classify the predicted PC1 score values of each fillet into three quality grades. The classification accuracy of calibration and prediction set were 85% and 80%, respectively. Results revealed that PC1 score classification method is feasible, and with Vis/NIRS, this method could be rapidly implemented.