دانلود مقاله ISI انگلیسی شماره 92247
ترجمه فارسی عنوان مقاله

تشخیص حملات سایبری به سیستم های محلی سازی در زمان واقعی برای روبات های مستقل

عنوان انگلیسی
Detection of Cyber-attacks to indoor real time localization systems for autonomous robots
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92247 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Robotics and Autonomous Systems, Volume 99, January 2018, Pages 75-83

ترجمه کلمات کلیدی
امنیت سایبری، موقعیت مکانی داخلی، روباتیک، حمله سایبری، چراغ قوه فراگیری ماشین،
کلمات کلیدی انگلیسی
Cyber-security; Indoor positioning; Robotics; Cyber-attack; Beacon; Machine learning;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص حملات سایبری به سیستم های محلی سازی در زمان واقعی برای روبات های مستقل

چکیده انگلیسی

Cyber-security for robotic systems is a growing concern. Many mobile robots rely heavily on Real Time Location Systems to operate safely in different environments. As a result, Real Time Location Systems have become a vector of attack for robots and autonomous systems, a situation which has not been studied well. This article shows that cyber-attacks on Real Time Location Systems can be detected by a system built using supervised learning. Furthermore it shows that some type of cyber-attacks on Real Time Location Systems, specifically Denial of Service and Spoofing, can be detected by a system built using Machine Learning techniques. In order to construct models capable of detecting those attacks, different supervised learning algorithms have been tested and validated using a dataset of real data recorded by a wheeled robot and a commercial Real Time Location System, based on Ultra Wideband beacons. Experimental results with a cross-validation analysis have shown that Multi-Layer Perceptron classifiers get the highest test score and the lowest validation error. Moreover, it is the model with less overfitting and more sensitivity for detecting Denial of Service and Spoofing cyber-attacks on Real Time Location Systems.