دانلود مقاله ISI انگلیسی شماره 92304
ترجمه فارسی عنوان مقاله

کنترل زمان واقعی با استفاده از بهینه سازی بیزی: مطالعه موردی در سیستم های انرژی باد در هوا

عنوان انگلیسی
Real-time control using Bayesian optimization: A case study in airborne wind energy systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92304 2017 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Control Engineering Practice, Volume 69, December 2017, Pages 131-140

ترجمه کلمات کلیدی
بهینه سازی بیزی، کنترل بهینه، سیستم های انرژی، انرژی باد، سیستم های انرژی باد هوابرد،
کلمات کلیدی انگلیسی
Bayesian Optimization; Optimal control; Energy systems; Wind energy; Airborne wind energy systems;
پیش نمایش مقاله
پیش نمایش مقاله  کنترل زمان واقعی با استفاده از بهینه سازی بیزی: مطالعه موردی در سیستم های انرژی باد در هوا

چکیده انگلیسی

This paper presents a framework by which a data-driven optimization technique known as Bayesian Optimization can be used for real-time optimal control. In particular, Bayesian Optimization is applied to the real-time altitude optimization of an Airborne Wind Energy (AWE) system, for the purpose of maximizing net energy production. Determining the optimal operating altitude of an AWE system is challenging, as the wind speed constantly varies with both time and altitude. Furthermore, without expensive auxiliary equipment, the wind speed is only measurable at the AWE system’s operating altitude. In this work, Gaussian Process modeling and Bayesian Optimization are used in real-time to optimize the AWE system’s operating altitude efficiently, without the use of auxiliary wind profiling equipment. Specifically, the underlying objective function is modeled by a Gaussian Process (GP); then, Bayesian Optimization utilizes the predictive uncertainty information from the GP to determine the best subsequent operating altitude. In the AWE application, context-dependent Bayesian Optimization is used to handle the time-varying nature of the wind shear profile (wind speed vs. altitude). Using real wind data, our method is validated against three baseline approaches. Our simulation results show that the Bayesian Optimization method is successful in significantly increasing power production over these baselines.