دانلود مقاله ISI انگلیسی شماره 95780
ترجمه فارسی عنوان مقاله

یک رویکرد بهینه سازی مبتنی بر شبیه سازی برای پیش بینی قطعات یدکی و نگهداری انتخابی

عنوان انگلیسی
A simulation based optimization approach for spare parts forecasting and selective maintenance
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95780 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Reliability Engineering & System Safety, Volume 168, December 2017, Pages 274-289

ترجمه کلمات کلیدی
قابلیت اطمینان ماموریت شبیه سازی، الگوریتم ژنتیک، ارتش، شکست شبیه سازی، پیش بینی قطعات،
کلمات کلیدی انگلیسی
Mission reliability; Simulation; Genetic algorithm; Army; Failure simulation; Spare parts forecasting;
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد بهینه سازی مبتنی بر شبیه سازی برای پیش بینی قطعات یدکی و نگهداری انتخابی

چکیده انگلیسی

Equipment of the Army encounters various modes of exploitation depending on the scenario in which it is used. Typically, the missions are followed by intervals which can be used for maintenance. This is a suitable condition for employment of selective maintenance strategy. However, this maintenance interval is bound by the constraints of time, resources and desired reliability before the start of the next mission. This calls for optimization of maintenance activities that can be fitted into the maintenance break. There is also a requirement of having a forecasting technique for reducing the supply lead times. This paper lays out a methodology to use simulation for predicting failures in the army equipment. A Genetic Algorithm (GA) based approach is then used for optimizing the maintenance activities before the start of the maintenance break. The process of Simulation plus GA Optimization is automated using a program in MATLAB. The novelty of the work lies in modifying the process of Simulation and GA Optimization to suit the exact modus operandi employed by the Army in deploying equipment for peace, training exercise and war (mission with or without some maintenance break) separately. In addition to optimizing the maintenance activities, the methodology also helps in forecasting the requirement of spare parts both before and during the mission.