دانلود مقاله ISI انگلیسی شماره 95836
ترجمه فارسی عنوان مقاله

مدیریت ریسک میکرواسپینگ مزرعه باد با استفاده از الگوریتم ژنتیک پیشرفته با بهینه سازی شبیه سازی

عنوان انگلیسی
Risk management of wind farm micro-siting using an enhanced genetic algorithm with simulation optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95836 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 107, July 2017, Pages 508-521

ترجمه کلمات کلیدی
الگوریتم ژنتیک پیشرفته، محل قرارگیری میکرو، مدیریت ریسک، بهینه سازی شبیه سازی، تجزیه و تحلیل چه؟ مزرعه باد،
کلمات کلیدی انگلیسی
Enhanced genetic algorithm; Micro-siting; Risk management; Simulation optimization; What-if analysis; Wind farm;
پیش نمایش مقاله
پیش نمایش مقاله  مدیریت ریسک میکرواسپینگ مزرعه باد با استفاده از الگوریتم ژنتیک پیشرفته با بهینه سازی شبیه سازی

چکیده انگلیسی

Wind farm micro-siting is the decision problem for determining the optimal placement of wind turbines in consideration of the wake effect. Existing micro-siting models seek to minimize the cost of energy (COE). However, little literature addresses the production risk under wind uncertainty. To this end, we develop several versions of the simulation optimization based risk management (SORM) model which embeds the Monte Carlo simulation component for obtaining a large number of samples from the wind probability density function. Our SORM model is flexible and allowing the decision makers to conduct various forms of what-if analysis trading profit, cost and risk according to their business value. Then we propose an enhanced genetic algorithm (EGA) which is customized to the properties of wind farm dimensions. The experimental results show that the EGA can obtain the SORM decision both effectively and efficiently as compared to other metaheuristic approaches. We demonstrate how the risk under wind uncertainty can be effectively handled with our SORM models. The simulations with what-if analyses are conducted to disclose important characteristics of the risky micro-siting problem.