دانلود مقاله ISI انگلیسی شماره 95840
ترجمه فارسی عنوان مقاله

یک رویکرد شبیه سازی بهینه سازی هیبریدی برای مسیریابی و ریتیمینگ قوی هواپیماهای بدون سرنشین هفتگی

عنوان انگلیسی
A hybrid optimization-simulation approach for robust weekly aircraft routing and retiming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95840 2017 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 84, November 2017, Pages 1-20

پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد شبیه سازی بهینه سازی هیبریدی برای مسیریابی و ریتیمینگ قوی هواپیماهای بدون سرنشین هفتگی

چکیده انگلیسی

We address the robust weekly aircraft routing and retiming problem, which requires determining weekly schedules for a heterogeneous fleet that maximizes the aircraft on-time performance, minimizes the total delay, and minimizes the number of delayed passengers. The fleet is required to serve a set of flights having known departure time windows while satisfying maintenance constraints. All flights are subject to random delays that may propagate through the network. We propose to solve this problem using a hybrid optimization-simulation approach based on a novel mixed-integer nonlinear programming model for the robust weekly aircraft maintenance routing problem. For this model, we provide an equivalent mixed-integer linear programming formulation that can be solved using a commercial solver. Furthermore, we describe a Monte-Carlo-based procedure for sequentially adjusting the flight departure times. We perform an extensive computational study using instances obtained from a major international airline, having up to 3387 flights and 164 aircraft, which demonstrates the efficacy of the proposed approach. Using the simulation software SimAir to assess the robustness of the solutions produced by our approach in comparison with that for the original solutions implemented by the airline, we found that on-time performance was improved by 9.8–16.0%, cumulative delay was reduced by 25.4–33.1%, and the number of delayed passengers was reduced by 8.2–51.6%.