دانلود مقاله ISI انگلیسی شماره 9811
ترجمه فارسی عنوان مقاله

بهینه سازی شبیه سازی سیستم های خنک کننده خشک کن به کمک انرژی خورشیدی برای مناطق نیمه گرمسیری هنگ کنگ

عنوان انگلیسی
Simulation–optimization of solar-assisted desiccant cooling system for subtropical Hong Kong
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
9811 2010 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Thermal Engineering, , Volume 30, Issues 2–3, February 2010, Pages 220-228

ترجمه کلمات کلیدی
خنک کننده خورشیدی -     انرژی خورشیدی -     سیستم تهویه هوا -     شبیه سازی -     بهینه سازی -     الگوریتم تکاملی -
کلمات کلیدی انگلیسی
Solar cooling, Solar energy, Air-conditioning, Simulation, Optimization, Evolutionary algorithm,
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی شبیه سازی سیستم های خنک کننده خشک کن به کمک انرژی خورشیدی برای مناطق نیمه گرمسیری هنگ کنگ

چکیده انگلیسی

Solar cooling is a novel approach, which primarily makes use of solar energy, instead of electricity, to drive the air-conditioning systems. In this study, solar-assisted desiccant cooling system (SADCS) was designed to handle the cooling load of typical office in the subtropical Hong Kong, in which half of the building energy is consumed by the air-conditioning systems. The SADCS mainly consisted of desiccant wheel, thermal wheel, evaporative coolers, solar air collectors and gas-fired auxiliary heater, it could directly tackle both the space load and ventilation load. Since the supply air flow is same as the outdoor air flow, the SADCS has a feature of sufficient ventilation that enhances the indoor air quality. Although it is inevitable to involve the auxiliary heater for regeneration of desiccant wheel, it is possible to minimize its usage by the optimal design and control scheme of the SADCS. Through simulation–optimization approach, the SADCS can provide a satisfactory performance in the subtropical Hong Kong.

مقدمه انگلیسی

.

نتیجه گیری انگلیسی

Through simulation–optimization, the design of solar-assisted desiccant cooling system (SADCS) was developed and its performance was evaluated. It was found that the SADCS was feasible to apply in a typical office environment in the subtropical Hong Kong. The SADCS included the desiccant wheel, thermal wheel, evaporative coolers, solar air collector and gas-fired auxiliary heater. The study of the SADCS included the necessary control schemes for year-round operation. In this multidimensional optimization problem, the robust evolutionary algorithm was adopted to maximize the annual average solar fraction, subject to the constraint of the upper limit of comfort temperature. Based on the optimized design of the SADCS, the two essential performance indicators – solar fraction and coefficient of performance, COP – were evaluated. The monthly average solar fraction was in the range from 8% to 33%, and the yearly average was 17%. The monthly average COP was from 1.08 to 1.60, with the mean of 1.38. The overall performance of SADCS showed that it was a technically feasible option of air-conditioning other than the conventional refrigeration system. The SADCS has the merits of both energy efficiency and indoor air quality, allowing the solar energy application for air-conditioning in the subtropical cities. In Hong Kong, realization of solar cooling would provide a green solution for buildings, and follow the global trend in sustainable development.