دانلود مقاله ISI انگلیسی شماره 106605
ترجمه فارسی عنوان مقاله

طرح نمادین و عددی برای حل معادلات انتگرال-دیفرانسیل خطی با عدم قطعیت پارامترهای تصادفی و ورودی فرآیند تصادفی گاوسی

عنوان انگلیسی
Symbolic and numeric scheme for solution of linear integro-differential equations with random parameter uncertainties and Gaussian stochastic process input
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
106605 2018 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 56, April 2018, Pages 15-31

ترجمه کلمات کلیدی
معادله انتگرال-دیفرانسیل تصادفی، پارامتر تصادفی ورودی گاوسی، عملکرد سبز، لحظات دوم مرتبه محاسبه، شبیه سازی مونت کارلو،
کلمات کلیدی انگلیسی
Stochastic integro-differential equation; Random parameter; Gaussian input; Green function; Second-order moments’ calculation; Monte Carlo simulation;
پیش نمایش مقاله
پیش نمایش مقاله  طرح نمادین و عددی برای حل معادلات انتگرال-دیفرانسیل خطی با عدم قطعیت پارامترهای تصادفی و ورودی فرآیند تصادفی گاوسی

چکیده انگلیسی

The paper describes a theoretical apparatus and an algorithmic part of application of the Green matrix-valued functions for time-domain analysis of systems of linear stochastic integro-differential equations. It is suggested that these systems are subjected to Gaussian nonstationary stochastic noises in the presence of model parameter uncertainties that are described in the framework of the probability theory. If the uncertain model parameter is fixed to a given value, then a time-history of the system will be fully represented by a second-order Gaussian vector stochastic process whose properties are completely defined by its conditional vector-valued mean function and matrix-valued covariance function. The scheme that is proposed is constituted of a combination of two subschemes. The first one explicitly defines closed relations for symbolic and numeric computations of the conditional mean and covariance functions, and the second one calculates unconditional characteristics by the Monte Carlo method. A full scheme realized on the base of Wolfram Mathematica and Intel Fortran software programs, is demonstrated by an example devoted to an estimation of a nonstationary stochastic response of a mechanical system with a thermoviscoelastic component. Results obtained by using the proposed scheme are compared with a reference solution constructed by using a direct Monte Carlo simulation.