دانلود مقاله ISI انگلیسی شماره 106606
ترجمه فارسی عنوان مقاله

تئوری متحد برای مدلسازی تصادفی از فرایندهای هیدروکلیتیک: حفظ توزیع حاشیه ای، ساختار همبستگی و تعویض

عنوان انگلیسی
Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
106606 2018 43 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Water Resources, Volume 115, May 2018, Pages 234-252

پیش نمایش مقاله
پیش نمایش مقاله  تئوری متحد برای مدلسازی تصادفی از فرایندهای هیدروکلیتیک: حفظ توزیع حاشیه ای، ساختار همبستگی و تعویض

چکیده انگلیسی

Hydroclimatic processes come in all “shapes and sizes”. They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific “parent” Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.