دانلود مقاله ISI انگلیسی شماره 106610
ترجمه فارسی عنوان مقاله

مقایسه گسل های تصادفی و الگوریتم های طبقه بندی برای فرآیندهای شیمیایی غیر خطی

عنوان انگلیسی
Comparison of stochastic fault detection and classification algorithms for nonlinear chemical processes
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
106610 2017 30 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Chemical Engineering, Volume 106, 2 November 2017, Pages 57-70

ترجمه کلمات کلیدی
تجزیه و تحلیل عدم قطعیت، هرج و مرج چندجملهای کلیدی، روند گاوسی، تنظیم مدل، نظارت بر فرآیند،
کلمات کلیدی انگلیسی
Uncertainty analysis; Generalized polynomial chaos; Gaussian process; Model adjustment; Process monitoring;
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه گسل های تصادفی و الگوریتم های طبقه بندی برای فرآیندهای شیمیایی غیر خطی

چکیده انگلیسی

This paper presents a comparative study of two methods to identify and classify intermittent stochastic faults occurring in a dynamic nonlinear chemical process. The methods are based on two popular stochastic modelling techniques, i.e., generalized polynomial chaos expansion (gPC) and Gaussian Process (GP). The goal is to assess which method is more efficient for fault detection and diagnosis (FDD) when using models with parametric uncertainty, and to show the capabilities and drawbacks of each method. The first method is based on a first-principle model combined with a gPC expansion to represent the uncertainty. Resulting statistics such as probability density functions (PDFs) of the measured variables is further used to infer the intermittent faults. For the second method, a GP model is used to project multiple inputs into a univariate model response from which the fault can be identified based on a minimum distance criterion. The performance of the proposed FDD algorithms is illustrated through two examples: (i) a chemical process involving two continuous, stirred tank reactors (CSTRs) and a flash tank separator, and (ii) the Tennessee Eastman benchmark problem.