دانلود مقاله ISI انگلیسی شماره 106643
ترجمه فارسی عنوان مقاله

مدل سازی دینامیک تلفات باتری لیتیوم یون: بهینه سازی فرمول بندی: رویکرد تصادفی برای سرعت بخشیدن به فرآیند طراحی

عنوان انگلیسی
Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
106643 2017 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 202, 15 September 2017, Pages 138-152

ترجمه کلمات کلیدی
باتری یون لیتیوم، مدل سازی پویایی ظرفیت محو شدن، فرمول های مختلف، فرآیند طراحی باتری سریعتر، مدل زنجیره مارکوف غیر یکپارچه پنج دولت،
کلمات کلیدی انگلیسی
Lithium ion battery; Capacity fading dynamics modelling; Various formulations; Accelerating battery design process; Five-state nonhomogeneous Markov chain model;
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی دینامیک تلفات باتری لیتیوم یون: بهینه سازی فرمول بندی: رویکرد تصادفی برای سرعت بخشیدن به فرآیند طراحی

چکیده انگلیسی

A five-state nonhomogeneous Markov chain model, which is an effective and promising way to accelerate the Li-ion battery design process by investigating the capacity fading dynamics of different formulations during the battery design phase, is reported. The parameters of this model are linked to known physicochemical degradation dynamics and material properties. Herein, the states and behaviors of the active materials in Li-ion batteries are modelled. To verify the efficiency of the proposed model, a dataset from approximately 3 years of cycling capacity fading experiments of various formulations using several different materials provided by Contemporary Amperex Technology Limited (CATL), as well as a NASA dataset, are employed. The capabilities of the proposed model for different amounts (50%, 70%, and 90%) of available experimental capacity data are tested and analyzed to assist with the final design determination for manufacturers. The average relative errors of life cycling prediction acquired from these tests are less than 2.4%, 0.8%, and 0.3%, even when only 50%, 70%, and 90% of the data, respectively, is available for different anode materials, electrolyte materials, and individual batteries. Furthermore, the variance is 0.518% when only 50% of the data are available; i.e., one can save at least 50% of the total experimental time and cost with an accuracy greater than 97% in the design phase, which demonstrates an effective and promising way to accelerate the Li-ion battery design process. The qualitative and quantitative analyses conducted in this study suggest that the proposed model provides an accurate, robust, and simple way to accelerate the Li-ion battery design process for battery manufacturers, thereby enabling rapid market capture.