دانلود مقاله ISI انگلیسی شماره 108370
ترجمه فارسی عنوان مقاله

برنامه ریزی متعادل با استفاده از داده ها و تکرار برای جریان های علمی در سیستم های محاسبات ابری

عنوان انگلیسی
A balanced scheduler with data reuse and replication for scientific workflows in cloud computing systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
108370 2017 26 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 74, September 2017, Pages 168-178

ترجمه کلمات کلیدی
پردازش ابری، جریان کاری علمی، برنامه ریزی، ماشین مجازی، محاسبات با شدت زیاد، اطلاعات بزرگ،
کلمات کلیدی انگلیسی
Cloud computing; Scientific workflow; Scheduling; Virtual machine; Data-intensive computing; Big data;
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی متعادل با استفاده از داده ها و تکرار برای جریان های علمی در سیستم های محاسبات ابری

چکیده انگلیسی

Cloud computing provides substantial opportunities to researchers who demand pay-as-you-go computing systems. Although cloud provider (e.g., Amazon Web Services) and application provider (e.g., biologists, physicists, and online gaming companies) both have specific performance requirements (e.g. application response time), it is the cloud scheduler’s responsibility to map the application to underlying cloud resources. This article presents a Balanced and file Reuse–Replication Scheduling (BaRRS) algorithm for cloud computing environments to optimally schedule scientific application workflows. BaRRS splits scientific workflows into multiple sub-workflows to balance system utilization via parallelization. It also exploits data reuse and replication techniques to optimize the amount of data that needs to be transferred among tasks at run-time. BaRRS analyzes the key application features (e.g., task execution times, dependency patterns and file sizes) of scientific workflows for adapting existing data reuse and replication techniques to cloud systems. Further, BaRRS performs a trade-off analysis to select the optimal solution based on two optimization constraints: execution time and monetary cost of running scientific workflows. BaRRS is compared with a state-of-the-art scheduling approach; experiments prove its superior performance. Experiments include four well known scientific workflows with different dependency patterns and data file sizes. Results were promising and also highlighted most critical factors affecting execution of scientific applications on clouds.