دانلود مقاله ISI انگلیسی شماره 26860
ترجمه فارسی عنوان مقاله

برنامه ریزی تولید تصادفی برای زنجیره تامین سوخت زیستی تحت تقاضا و عدم قطعیت قیمت

عنوان انگلیسی
Stochastic production planning for a biofuel supply chain under demand and price uncertainties
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
26860 2013 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 103, March 2013, Pages 189–196

ترجمه کلمات کلیدی
زنجیره تامین سوخت های زیستی - تجزیه خم - برنامه ریزی تصادفی - شبیه سازی مونت کارلو -
کلمات کلیدی انگلیسی
Biofuel supply chain, Benders decomposition, Stochastic programming, Monte Carlo simulation,
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی تولید تصادفی برای زنجیره تامین سوخت زیستی تحت تقاضا و عدم قطعیت قیمت

چکیده انگلیسی

In this paper, we propose a stochastic production planning model for a biofuel supply chain under demand and price uncertainties. The supply chain consists of biomass suppliers, biofuel refinery plants and distribution centers. A stochastic linear programming model is proposed within a single-period planning framework to maximize the expected profit. Decisions such as the amount of raw materials purchased, the amount of raw materials consumed and the amount of products produced are considered. Demands of end products are uncertain with known probability distributions. The prices of end products follow Geometric Brownian Motion (GBM). Benders decomposition (BD) with Monte Carlo simulation technique is applied to solve the proposed model. To demonstrate the effectiveness of the proposed stochastic model and the decomposition algorithm, a representative supply chain for an ethanol plant in North Dakota is considered. To investigate the results of the proposed model, a simulation framework is developed to compare the performances of deterministic model and proposed stochastic model. The results from the simulation indicate the proposed model obtain higher expected profit than the deterministic model under different uncertainty settings. Sensitivity analyses are performed to gain management insight on how profit changes due to the uncertainties affect the model developed.