دانلود مقاله ISI انگلیسی شماره 43126
ترجمه فارسی عنوان مقاله

استفاده از برآورد احتمالاتی امکان سنجی فازی بیزی افزایش سفارش معوقه زنجیره تامین، سفارش معوقه پر نشده، و زمان انتظار مشتری با استفاده از شبیه سازی تصادفی مارکوف

عنوان انگلیسی
Application of a Fuzzy Feasibility Bayesian Probabilistic Estimation of supply chain backorder aging, unfilled backorders, and customer wait time using stochastic simulation with Markov blankets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43126 2014 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 16, 15 November 2014, Pages 7005–7022

ترجمه کلمات کلیدی
سیستم پشتیبانی تصمیم گیری - شبکه های بیزی - سفارش معوقه - منطق فازی - سفارش معوقه زنجیره تامین زنجیره
کلمات کلیدی انگلیسی
AAC, Acquisition Advice Code; ALT, administrative lead time; AMC, Acquisition Method Code; AMSC, Acquisition Method Suffix Code; B3I, Battlefield Breakout Backorder Initiative; BLS, birth to last shipment; CIIC, Controlled Inventory Item Code; COTS, Commercial Off The Shelf; DLA, Defense Logistics Agency; NIIN, National Item Identification Number; NP, Non-deterministic Polynomial-time; NSN, National Stock Number; PHDM, Procurement History Data Mart; PLT, production lead time; RHDM, Requisition History Data Mart; SCBORT, supply chain backorder triggerSupply chain; Decision support system; Bayesian network; Backorder; Fuzzy logic; Markov blanket
پیش نمایش مقاله
پیش نمایش مقاله   استفاده از برآورد احتمالاتی امکان سنجی فازی بیزی افزایش سفارش معوقه زنجیره تامین، سفارش معوقه پر نشده، و زمان انتظار مشتری با استفاده از شبیه سازی تصادفی مارکوف

چکیده انگلیسی

Because supply chains are complex systems prone to uncertainty, statistical analysis is a useful tool for capturing their dynamics. Using data on acquisition history and data from case study reports, we used regression analysis to predict backorder aging using National Item Identification Numbers (NIINs) as unique identifiers. More than 56,000 NIINs were identified and used in the analysis. Bayesian analysis was then used to further investigate the NIIN component variables. The results indicated that it is statistically feasible to predict whether an individual NIIN has the propensity to become a backordered item. This paper describes the structure of a Bayesian network from a real-world supply chain data set and then determines a posterior probability distribution for backorders using a stochastic simulation based on Markov blankets. Fuzzy clustering was used to produce a funnel diagram that demonstrates that the Acquisition Advice Code, Acquisition Method Suffix Code, Acquisition Method Code, and Controlled Inventory Item Code backorder performance metric of a trigger group dimension may change dramatically with variations in administrative lead time, production lead time, unit price, quantity ordered, and stock. Triggers must be updated regularly and smoothly to keep up with the changing state of the supply chain backorder trigger clusters of market sensitiveness, collaborative process integration, information drivers, and flexibility.