دانلود مقاله ISI انگلیسی شماره 43220
ترجمه فارسی عنوان مقاله

مدل های پیش بینی شکست هوشمند برای جریان کار علمی

عنوان انگلیسی
Intelligent failure prediction models for scientific workflows
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43220 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 3, 15 February 2015, Pages 980–989

ترجمه کلمات کلیدی
پردازش ابری - جریان کار - پیش بینی شکست - جریان کار علمی - فراگیری ماشین
کلمات کلیدی انگلیسی
Cloud Computing; Workflows; Failure prediction; Scientific workflows; Machine learning
پیش نمایش مقاله
پیش نمایش مقاله  مدل های پیش بینی شکست هوشمند برای جریان کار علمی

چکیده انگلیسی

The ever-growing demand and heterogeneity of Cloud Computing is garnering popularity with scientific communities to utilize the services of Cloud for executing large scale scientific applications in the form of set of tasks known as Workflows. As scientific workflows stipulate a process or computation to be executed in the form of data flow and task dependencies that allow users to simply articulate multi-step computational and complex tasks. Hence, proactive fault tolerance is required for the execution of scientific workflows. To reduce the failure effect of workflow tasks on the Cloud resources during execution, task failures can be intelligently predicted by proactively analyzing the data of multiple scientific workflows using the state of the art of machine learning approaches for failure prediction. Therefore, this paper makes an effort to focus on the research problem of designing an intelligent task failure prediction models for facilitating proactive fault tolerance by predicting task failures for Scientific Workflow applications. Firstly, failure prediction models have been implemented through machine learning approaches using evaluated performance metrics and also demonstrates the maximum prediction accuracy for Naive Bayes. Then, the proposed failure models have also been validated using Pegasus and Amazon EC2 by comparing actual task failures with predicted task failures.