دانلود مقاله ISI انگلیسی شماره 86229
ترجمه فارسی عنوان مقاله

تخصیص برنامه کاربردی با صرفهجویی در مصرف انرژی در مدیریت پایگاه داده مبتنی بر مشخصات از طریق الگوریتم ژنتیک تعمیر

عنوان انگلیسی
Energy-efficient application assignment in profile-based data center management through a Repairing Genetic Algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
86229 2018 28 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 67, June 2018, Pages 399-408

ترجمه کلمات کلیدی
مرکز اطلاعات، انتصاب برنامه، بهره وری انرژی، برنامه ریزی منابع، الگوریتم ژنتیک،
کلمات کلیدی انگلیسی
Data center; Application assignment; Energy efficiency; Resource scheduling; Genetic algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  تخصیص برنامه کاربردی با صرفهجویی در مصرف انرژی در مدیریت پایگاه داده مبتنی بر مشخصات از طریق الگوریتم ژنتیک تعمیر

چکیده انگلیسی

The massive deployment of data center services and cloud computing comes with exorbitant energy costs and excessive carbon footprint. This demands green initiatives and energy-efficient strategies for greener data centers. Assignment of an application to different virtual machines has a significant impact on both energy consumption and resource utilization in virtual resource management of a data centre. However, energy efficiency and resource utilization are conflicting in general. Thus, it is imperative to develop a scalable application assignment strategy that maintains a trade-off between energy efficiency and resource utilization. To address this problem, this paper formulates application assignment to virtual machines as a profile-driven optimization problem under constraints. Then, a Repairing Genetic Algorithm (RGA) is presented to solve the large-scale optimization problem. It enhances penalty-based genetic algorithm by incorporating the Longest Cloudlet Fastest Processor (LCFP), from which an initial population is generated, and an infeasible-solution repairing procedure (ISRP). The application assignment with RGA is integrated into a three-layer energy management framework for data centres. Experiments are conducted to demonstrate the effectiveness of the presented approach, e.g., 23% less energy consumption and 43% more resource utilization in comparison with the steady-state Genetic Algorithm (GA) under investigated scenarios.