دانلود مقاله ISI انگلیسی شماره 95768
ترجمه فارسی عنوان مقاله

ادغام کلاغ به منظور بهینه سازی ردیفی برای حل مسئله بهینه سازی شبیه سازی شده محدود می شود

عنوان انگلیسی
Merging crow search into ordinal optimization for solving equality constrained simulation optimization problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95768 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Science, Volume 23, November 2017, Pages 44-57

ترجمه کلمات کلیدی
بهینه سازی شباهت محدود، جستجوی پیشرفته کلاغ، بهینه سازی عادی، تنوع رگرسیون چند متغیره انطباقی، تخصیص بودجه محاسباتی بهینه، خط تولید نوع شبکه،
کلمات کلیدی انگلیسی
Equality-constrained simulation optimization; Enhanced crow search; Ordinal optimization; Multivariate adaptive regression splines; Optimal computing budget allocation; Network-type production line;
پیش نمایش مقاله
پیش نمایش مقاله  ادغام کلاغ به منظور بهینه سازی ردیفی برای حل مسئله بهینه سازی شبیه سازی شده محدود می شود

چکیده انگلیسی

Equality-constrained simulation optimization problems (ECSOP) involve the finding of optimal solutions by simulation within a well-defined search space under deterministic equality constraints. ECSOPs belong to the class of NP-hard problems. The large search space makes them difficult to solve in a short period using conventional optimization techniques. An approach that merges the crow search (CS) into ordinal optimization (OO), abbreviated as CSOO, is developed to find a near-optimal solution to the ECSOP within a reasonable time. The proposed approach has three phases, which are surrogate model, exploration and exploitation. First, a surrogate model, based on the multivariate adaptive regression splines, is used to evaluate the fitness of a solution. Next, an enhanced crow search algorithm is used to find N excellent solutions in the search space. Finally, an intensified optimal computing budget allocation is used to find a near-optimal solution among the N excellent solutions. The proposed CSOO approach is applied to a three-stage ten-node network-type production line, and the formulated problem is an ECSOP with a large search space. The developed formulation can be used for network-type production lines with any distribution of arrivals and production times. Simulation results that are obtained using the CSOO are compared with those obtained using four competing methods Test results reveal that the proposed approach yields a near-optimal solution of much higher quality than obtained using four competing methods, and with a much higher computing efficiency.