دانلود مقاله ISI انگلیسی شماره 110210
ترجمه فارسی عنوان مقاله

الگوریتم بهینه سازی علفهای هرز دوزبانه مهاجم برای انتخاب یک فروشنده

عنوان انگلیسی
A binary-continuous invasive weed optimization algorithm for a vendor selection problem
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110210 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 140, 15 January 2018, Pages 158-172

ترجمه کلمات کلیدی
انتخاب فروشنده، مقدار نظم اقتصادی، استراتژی چند منبع بهینه سازی علفهای هرز مهاجم، الگوریتم ژنتیک،
کلمات کلیدی انگلیسی
Vendor selection; Economic order quantity; Multi-sourcing strategy; Invasive weed optimization; Genetic algorithm;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم بهینه سازی علفهای هرز دوزبانه مهاجم برای انتخاب یک فروشنده

چکیده انگلیسی

This paper introduces a novel and practical vendor selection problem of a firm that cooperates with multiple geographically dispersed stores. In this problem, the firm entrusts some of its business process to external vendors, and each store can split the ordered quantity between one or more potential vendors, represented as a multi-sourcing strategies. Moreover, the Cobb–Douglas demand function is utilised to establish a relationship between the market demand and the selling price; representing price-sensitive demand. This paper seeks to choose the best vendors, to allocate the stores to them, and to find the optimal values for inventory-related decisions. The approach is based on the integration of the vendor selection problem and the inventory-related decisions in order to generate additional opportunities for system-wide operational efficiency and cost-effectiveness. The aim is to minimise total cost of the firm consisting of costs associated with the vendor selection and inventory-related decisions. A novel meta-heuristic called the binary-continuous invasive weed optimization (BCIWO) algorithm that is capable of solving both binary and continuous optimization problems is developed to solve the complicated NP-hard problem. As there is no benchmark available in the literature, an efficient genetic algorithm enhanced by a multi-parent crossover operator is designed to solve the problem in order to validate the results obtained using BCIWO. The algorithms are tuned using the response surface methodology, based on which their performances are analyzed statistically. Finally, the applicability of the proposed approach and the solution methodologies are demonstrated.