دانلود مقاله ISI انگلیسی شماره 88753
ترجمه فارسی عنوان مقاله

یک الگوریتم مبتنی بر تجزیه الگوریتم عمومی برای یک مشکل موقعیت مکانی موجود با محدودیت ظرفیت موجودی احتمالی

عنوان انگلیسی
A Generalized Benders Decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
88753 2018 39 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 267, Issue 3, 16 June 2018, Pages 806-817

ترجمه کلمات کلیدی
محل، تجزیه ژنراتورهای عمومی، برنامه نویسی غیر خطی و غیرخطی عدد صحیح مختلط، مشکلات موقعیت مکانی موجود در ظرفیت طراحی شبکه زنجیره تامین استراتژیک،
کلمات کلیدی انگلیسی
Location; Generalized benders decomposition; Mixed integer nonconvex-nonlinear programming; Capacitated inventory location problems; Strategic supply chain network design;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم مبتنی بر تجزیه الگوریتم عمومی برای یک مشکل موقعیت مکانی موجود با محدودیت ظرفیت موجودی احتمالی

چکیده انگلیسی

This paper deals with an inventory location problem with order quantity and stochastic inventory capacity constraints, which aims to address strategic supply chain network design problems and is of a nonlinear, nonconvex mixed integer programming nature. The problem integrates strategic supply chain networks design decisions (i.e., warehouse location and customer assignment) with tactical inventory control decisions for each warehouse (i.e., order size and reorder point). A novel decomposition approach that deals with the nonconvex nature of the problem formulation is proposed and implemented, based on the Generalized Benders Decomposition. The proposed decomposition yields a Master Problem that addresses warehouses location and customer assignment decisions, and a set of underlying Subproblems (SPs) that deal with warehouse inventory control decisions. Based on this decomposition, nonlinearity of the original problem is captured by the SPs that are solved at optimality, while the Master Problem is a mixed integer linear programming problem. The master is solved using a commercial solver, the SPs are solved analytically by inspection, and cuts to be added into the Master Problem are obtained based on Lagrangian dual information. Optimal solutions were found for 160 instances in competitive times.