دانلود مقاله ISI انگلیسی شماره 107058
ترجمه فارسی عنوان مقاله

طبقه بندی چند لایحه با بهره گیری از همبستگی برچسب های مثبت و منفی محلی

عنوان انگلیسی
Multi-label classification by exploiting local positive and negative pairwise label correlation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107058 2017 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 257, 27 September 2017, Pages 164-174

ترجمه کلمات کلیدی
طبقه بندی چند لایک، ک نزدیکترین همسایگان، همبستگی برچسب های محلی، همبستگی برچسب مثبت و منفی،
کلمات کلیدی انگلیسی
Multi-label classification; k nearest neighbors; Local label correlation; Positive and negative label correlation;
پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی چند لایحه با بهره گیری از همبستگی برچسب های مثبت و منفی محلی

چکیده انگلیسی

In multi-label learning, each example is represented by a single instance and associated with multiple class labels. Existing multi-label learning algorithms mainly exploit label correlations globally, by assuming that the label correlations are shared by all the examples. Moreover, these multi-label learning algorithms exploit the positive label correlations among different class labels. In practical applications, however, different examples may share different label correlations, and the labels are not only positive correlated, but also mutually exclusive with each other. In this paper, we propose a simple and effective Bayesian model for multi-label classification by exploiting Local positive and negative Pairwise Label Correlations, named LPLC. In the training stage, the positive and negative label correlations of each ground truth label for all the training examples are discovered. In the test stage, the k nearest neighbors and their corresponding positive and negative pairwise label correlations for each test example are first identified, then we make prediction through maximizing the posterior probability, which is estimated on the label distribution, the local positive and negative pairwise label correlations embodied in the k nearest neighbors. A comparative study with the state-of-the-art approaches manifests a competitive performance of our proposed method.