دانلود مقاله ISI انگلیسی شماره 136111
ترجمه فارسی عنوان مقاله

یک استراتژی مدیریت انرژی مبتنی بر مدل پیش بینی کنترل تصادفی برای اتوبوس های هیبریدی پلاگین

عنوان انگلیسی
An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136111 2017 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 196, 15 June 2017, Pages 279-288

ترجمه کلمات کلیدی
کنترل پیش بینی کننده مدل تصادفی، روش مونت کارلو زنجیره مارکوف، اتوبوس برق هیبریدی پلاگین، استراتژی مدیریت انرژی، آزمایش سخت افزار در حلقه،
کلمات کلیدی انگلیسی
Stochastic model predictive control; Markov Chain Monte Carlo Method; Plug-in hybrid electric bus; Energy management strategy; Hardware-in-the-loop experiment;
پیش نمایش مقاله
پیش نمایش مقاله  یک استراتژی مدیریت انرژی مبتنی بر مدل پیش بینی کنترل تصادفی برای اتوبوس های هیبریدی پلاگین

چکیده انگلیسی

Model predictive control (MPC) can effectively solve online optimization issues, even with various constraints, when maintained at high robustness. Considering the energy management issue of plug-in hybrid electric bus (PHEB) as a constrained nonlinear optimization problem, a strategy based on stochastic model predictive control (SMPC) is put forward and verified in this paper. Firstly, Markov Chain Monte Carlo Method (MCMC) is adopted to forecast velocity sequences at every current state, in the form of multi scale single step (MSSS), with post-processing algorithms to moderate fluctuations of the prediction results like average filtering, quadratic fitting, and the like. The offline simulation results show that the optimization can effectively improve the predictive accuracy, make the following energy management feasible and reduce the fuel consumption by 1.9%. Then the SMPC-based energy management strategy is proposed. In order to prevent the driving cycle state deficiencies from interrupting the prediction for practical application, a state reconstitution method is constructed accordingly. Besides, the predictive steps are made time-varying by an online accuracy estimation method and a corresponding threshold to maintain the accuracy of forecast. Finally, the hardware-in-the-loop (HIL) experiments are conducted and the results show that the SMPC-based strategy is reasonable and the fuel consumption decreases by 3.9% further with variable predictive steps than that of fixed ones. In summary, this paper illustrates an effective SMPC-based methodology for energy management for PHEB, and techniques like MSSS prediction with post-processing, state reconstitution method, online accuracy estimation can be adopted to solve similar problems.