دانلود مقاله ISI انگلیسی شماره 161596
ترجمه فارسی عنوان مقاله

یک چارچوب یکپارچه برای پیش بینی سیاست های سلامت و سیاست نگهداری مطلوب برای سیستم های مکانیکی با استفاده از مدل خطرات متناسب

عنوان انگلیسی
An integrated framework for health measures prediction and optimal maintenance policy for mechanical systems using a proportional hazards model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
161596 2018 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 111, October 2018, Pages 285-302

ترجمه کلمات کلیدی
اقدامات بهداشتی، فرآیند خرابکاری چند جانبه، نگهداری مشروط بر اساس، مدل خطرات نرم افزاری، فرایند گاما،
کلمات کلیدی انگلیسی
Health measures; Multi-state deterioration process; Conditional-based maintenance; Proportional hazards model; Gamma process;
پیش نمایش مقاله
پیش نمایش مقاله  یک چارچوب یکپارچه برای پیش بینی سیاست های سلامت و سیاست نگهداری مطلوب برای سیستم های مکانیکی با استفاده از مدل خطرات متناسب

چکیده انگلیسی

This paper considers an integrated framework for health measures prediction and optimal maintenance policy for mechanical systems subject to condition monitoring (CM) and random failure. We propose the proportional hazards model (PHM) to consider CM information as well as the age of the mechanical systems. Although the form of health prediction for the mechanical systems under periodic monitoring in the PHM with Markov chain was developed previously, the case of the continuous-state degradation process allowing possible degradation between the inspections still has not appeared. To this aim, the paper allows the use of Gamma process with non-constant degradation, which broadens the application area of PHM. A matrix-based approximation method is employed to compute health measures of the machine, such as condition reliability, mean residual life, residual life distribution. Based on the health measures, the optimal maintenance policy, which considers both hazard rate control limit and age control limit, is proposed and the optimization problem is formulated and solved in a semi-Markov decision process (SMDP) framework. The objective is to minimize the long-run expected average cost. The method is illustrated using two real data sets obtained from feed subsystem of a boring machine and GaAs lasers collected at regular time epochs, respectively. A comparison with other methods is given, which illustrates the effectiveness of our approach.