دانلود مقاله ISI انگلیسی شماره 49444
ترجمه فارسی عنوان مقاله

مبتنی بر تئوری قیمت گذاری آربیتراژ تحلیل عاملی زمانی گاوسی برای مدیریت نمونه کارها تطبیقی

عنوان انگلیسی
Arbitrage pricing theory-based Gaussian temporal factor analysis for adaptive portfolio management
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
49444 2004 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 37, Issue 4, September 2004, Pages 485–500

ترجمه کلمات کلیدی
تحلیل عاملی زمانی؛ تئوری قیمت گذاری آربیتراژ؛ بهینه سازی سبد سهام - نسبت شارپ؛ خطر حرکت نزولی؛ نوسانات صعودی
کلمات کلیدی انگلیسی
Temporal factor analysis; Arbitrage pricing theory; Portfolio optimization; Sharpe ratio; Downside risk; Upside volatility
پیش نمایش مقاله
پیش نمایش مقاله  مبتنی بر تئوری قیمت گذاری آربیتراژ تحلیل عاملی زمانی گاوسی برای مدیریت نمونه کارها تطبیقی

چکیده انگلیسی

Ever since the inception of Markowitz's modern portfolio theory, static portfolio optimization techniques were gradually phased out by dynamic portfolio management due to the growth of popularity in automated trading. In view of the intensive computational needs, it is common to use machine learning approaches on Sharpe ratio maximization for implementing dynamic portfolio optimization. In the literature, return-based approaches which directly used security prices or returns to control portfolio weights were often used. Inspired by the arbitrage pricing theory (APT), some other efforts concentrate on indirect modelling using hidden factors. On the other hand, with regard to the proper risk measure in the Sharpe ratio, downside risk was considered a better substitute for variance. In this paper, we investigate how the Gaussian temporal factor analysis (TFA) technique can be used for portfolio optimization. Since TFA is based on the classical APT model and has the benefit of removing rotation indeterminacy via temporal modelling, using TFA for portfolio management allows portfolio weights to be indirectly controlled by several hidden factors. Moreover, we extend the approach to some other variants tailored for investors according to their investment objectives and degree of risk tolerance.