دانلود مقاله ISI انگلیسی شماره 107243
ترجمه فارسی عنوان مقاله

روش راه حل های اساسی برای مشکلات نوع مخلوط و کرک در تئوری کشش کلاسیک

عنوان انگلیسی
Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107243 2017 29 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transactions of A. Razmadze Mathematical Institute, Volume 171, Issue 3, December 2017, Pages 264-292

ترجمه کلمات کلیدی
روش راه حل های اساسی تئوری کشش، ارتعاشات انعطاف پذیر، مشکل ارزش مرزی مختلط، مشکل انتقال مختلط مشکل ترک راه حل های تقریبی
کلمات کلیدی انگلیسی
Method of fundamental solutions; Theory of elasticity; Elastic vibrations; Mixed boundary value problem; Mixed transmission problem; Crack problem; Approximate solutions;
پیش نمایش مقاله
پیش نمایش مقاله  روش راه حل های اساسی برای مشکلات نوع مخلوط و کرک در تئوری کشش کلاسیک

چکیده انگلیسی

We analyse some new aspects concerning application of the fundamental solution method to the basic three-dimensional boundary value problems, mixed transmission problems, and also interior and interfacial crack type problems for steady state oscillation equations of the elasticity theory. First we present existence and uniqueness theorems of weak solutions and derive the corresponding norm estimates in appropriate function spaces. Afterwards, by means of the columns of Kupradze’s fundamental solution matrix special systems of vector functions are constructed explicitly. The linear independence and completeness of these systems are proved in appropriate Sobolev–Slobodetskii and Besov function spaces. It is shown that the problem of construction of approximate solutions to the basic and mixed boundary value problems and to the interior and interfacial crack problems can be reduced to the problems of approximation of the given boundary vector functions by elements of the linear spans of the corresponding complete systems constructed by the fundamental solution vectors. By this approach the approximate solutions of the boundary value and transmission problems are represented in the form of linear combinations of the columns of the fundamental solution matrix with appropriately chosen poles distributed outside the domain under consideration. The unknown coefficients of the linear combinations are defined by the approximation conditions of the corresponding boundary and transmission data.