دانلود مقاله ISI انگلیسی شماره 107282
ترجمه فارسی عنوان مقاله

ارزیابی دقیق از کاهش حوضه های تصادفی هدفمند

عنوان انگلیسی
Exact evaluation of targeted stochastic watershed cuts
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107282 2017 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Discrete Applied Mathematics, Volume 216, Part 2, 10 January 2017, Pages 449-460

ترجمه کلمات کلیدی
تقسیم بندی تصویر، حوضچه تصادفی، حوزه آبخیز بریده، حداقل جنگل پشته
کلمات کلیدی انگلیسی
Image segmentation; Stochastic watershed; Watershed cut; Minimum spanning forest;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی دقیق از کاهش حوضه های تصادفی هدفمند

چکیده انگلیسی

Seeded segmentation with minimum spanning forests, also known as segmentation by watershed cuts, is a powerful method for supervised image segmentation. Given that correct segmentation labels are provided for a small set of image elements, called seeds, the watershed cut method completes the labeling for all image elements so that the boundaries between different labels are optimally aligned with salient edges in the image. Here, a randomized version of watershed segmentation, the targeted stochastic watershed, is proposed for performing multi-label targeted image segmentation with stochastic seed input. The input to the algorithm is a set of probability density functions (PDFs), one for each segmentation label, defined over the pixels of the image. For each pixel, we calculate the probability that the pixel is assigned a given segmentation label in seeded watershed segmentation with seeds drawn from the input PDFs. We propose an efficient algorithm (quasi-linear with respect to the number of image elements) for calculating the desired probabilities exactly.