دانلود مقاله ISI انگلیسی شماره 107347
ترجمه فارسی عنوان مقاله

تضمین استحکام نظارت بر شرایط ساختاری به تغییرات محیطی

عنوان انگلیسی
Guaranteeing robustness of structural condition monitoring to environmental variability
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107347 2017 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Sound and Vibration, Volume 386, 6 January 2017, Pages 134-148

ترجمه کلمات کلیدی
نظارت بر سلامت سازمانی، مدلسازی سری زمانی، عدم قطعیت اندازه گیری،
کلمات کلیدی انگلیسی
Structural health monitoring; Time series modeling; Uncertainty quantification;
پیش نمایش مقاله
پیش نمایش مقاله  تضمین استحکام نظارت بر شرایط ساختاری به تغییرات محیطی

چکیده انگلیسی

Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using “baseline” data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate “size” of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)