دانلود مقاله ISI انگلیسی شماره 108126
ترجمه فارسی عنوان مقاله

پیش بینی تجهیزات صنعتی باقی مانده زندگی مفید با شباهت فازی و تئوری تابع اعتقاد

عنوان انگلیسی
Prediction of industrial equipment Remaining Useful Life by fuzzy similarity and belief function theory
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
108126 2017 32 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 83, 15 October 2017, Pages 226-241

ترجمه کلمات کلیدی
پیشگیری، باقی مانده زندگی مفید، عدم قطعیت، شباهت فازی، تابع باور، مشعل راکتور آب جوش،
کلمات کلیدی انگلیسی
Prognostics; Remaining Useful Life; Uncertainty; Fuzzy similarity; Belief function; Boiling Water Reactor condenser;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی تجهیزات صنعتی باقی مانده زندگی مفید با شباهت فازی و تئوری تابع اعتقاد

چکیده انگلیسی

We develop a novel prognostic method for estimating the Remaining Useful Life (RUL) of industrial equipment and its uncertainty. The novelty of the work is the combined use of a fuzzy similarity method for the RUL prediction and of Belief Function Theory for uncertainty treatment. This latter allows estimating the uncertainty affecting the RUL predictions even in cases characterized by few available data, in which traditional uncertainty estimation methods tend to fail. From the practical point of view, the maintenance planner can define the maximum acceptable failure probability for the equipment of interest and is informed by the proposed prognostic method of the time at which this probability is exceeded, allowing the adoption of a predictive maintenance approach which takes into account RUL uncertainty. The method is applied to simulated data of creep growth in ferritic steel and to real data of filter clogging taken from a Boiling Water Reactor (BWR) condenser. The obtained results show the effectiveness of the proposed method for uncertainty treatment and its superiority to the Kernel Density Estimation (KDE) and the Mean-Variance Estimation (MVE) methods in terms of reliability and precision of the RUL prediction intervals.