دانلود مقاله ISI انگلیسی شماره 39936
ترجمه فارسی عنوان مقاله

الگوریتم بهینه سازی اشفتگی طوفان مغزی (BSOA): یک الگوریتم کارآمد برای یافتن مکان بهینه و تنظیم ادوات FACTS در سیستم های قدرت الکتریکی

عنوان انگلیسی
Brainstorm optimisation algorithm (BSOA): An efficient algorithm for finding optimal location and setting of FACTS devices in electric power systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
39936 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 69, July 2015, Pages 48–57

ترجمه کلمات کلیدی
بهینه سازی اشفتگی فکری موقتی - تخصیص FACTS - افزایش ولتاژ - احتمالی - تخصیص TCSC - تخصیص SVC
کلمات کلیدی انگلیسی
Brainstorm optimisation; FACTS allocation; Voltage profile enhancement; Contingency; TCSC allocation; SVC allocation
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم بهینه سازی اشفتگی طوفان مغزی (BSOA): یک الگوریتم کارآمد برای یافتن مکان بهینه و تنظیم ادوات FACTS در سیستم های قدرت الکتریکی

چکیده انگلیسی

In electric power systems, finding optimal location and setting of flexible AC transmission system (FACTS) devices represents a difficult optimisation problem. This is due to its discrete, multi-objective, multi-modal and constrained nature. Finding near-global solutions in such a problem is very demanding. Brainstorm optimisation algorithm (BSOA) is a novel promising heuristic optimisation algorithm inspired by brainstorming process in human beings. In this paper, BSOA is employed to find optimal location and setting of FACTS devices. Static var compensators (SVC’s) and thyristor controlled series compensators (TCSC’s) are used as FACTS devices. FACTS allocation problem is formulated as a multi-objective problem whose objectives are voltage profile enhancement, overload minimisation and loss minimisation. The results of applying BSOA to FACTS allocation problem in IEEE 57 bus system demonstrate its high efficacy in solving this problem both with TCSC and SVC units. BSOA leads to better voltage profile and lower losses than particle swarm optimisation (PSO), genetic algorithm (GA), differential evolution (DE), simulated annealing (SA), hybrid of genetic algorithm and pattern search (GA–PS), backtracking search algorithm (BSA), gravitational search algorithm (GSA) and asexual reproduction optimisation (ARO). The findings of this research can be used by power system decision makers in order to establish a better voltage profile and lower voltage deviations during contingencies.