دانلود مقاله ISI انگلیسی شماره 39950
ترجمه فارسی عنوان مقاله

چارچوبی دیدگاه مشترک برای پشتیبانی تصمیم گیری مشترک و انتقال دانش ضمنی

عنوان انگلیسی
Co-Insights framework for collaborative decision support and tacit knowledge transfer
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
39950 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 45, 1 March 2016, Pages 85–96

ترجمه کلمات کلیدی
بهترین تطبیق - تئوری کنترل مشترک - تجزیه و تحلیل بصری مشترک - پشتیبانی تصمیم گیری - انتقال دانش
کلمات کلیدی انگلیسی
Best matching; Collaborative control theory; Collaborative visual analytics; Decision support; Knowledge transfer
پیش نمایش مقاله
پیش نمایش مقاله  چارچوبی دیدگاه مشترک برای پشتیبانی تصمیم گیری مشترک و انتقال دانش ضمنی

چکیده انگلیسی

Abundant software tools use visual analytics (VA) techniques to support various decisions with the aim of boosting better insights. Large organizations, however, lose efficiency in selecting the right tools to support the persons who apply the tools to various decision tasks. Consequently, the creation and sharing of insights are far from optimal, leading consistently to sub-optimal decisions. In this work, the Co-Insights framework is introduced with automated collaboration support features to enable effective creation and sharing of distributed insights. A collaboration network (Co-Net) is established to model the collaborative decision making process in an organization. Two important features of the Co-Insights framework are developed: collaborative agent allocation analysis (CA3) for task–participant matching; and a robust mechanism for the recommendation of selected VA tools, by participant–tool matching. Thus, by better matching of tasks and tools with participants, the creation and sharing of insights are improved in any collaborative team for better decision making, accompanied with the tacit knowledge transfer to sustain the entire organization. To validate the effectiveness of these two main features, two experiments built on the Co-Net model are performed to test the newly developed algorithms. It has been found that CA3 significantly improves the matching scores by up to 35%, compared with conventional task–participant matching methods. The neural network based participant–tool matching mechanism yields robust results with 4% mismatches for 10% noise levels, and with 16% mismatches for 30% noise levels. Real case applications and implications are described, and further plans to extend this new framework are also outlined based on the reported experiments and evaluations.