دانلود مقاله ISI انگلیسی شماره 49455
ترجمه فارسی عنوان مقاله

مدیریت پرتفوی با نیرومندی در هر دو بخش پیش بینی و تصمیم گیری: یک رویکرد یادگیری مبتنی بر مدل مخلوط

عنوان انگلیسی
Portfolio management with robustness in both prediction and decision: A mixture model based learning approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
49455 2014 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Economic Dynamics and Control, Volume 48, November 2014, Pages 1–25

ترجمه کلمات کلیدی
انتخاب سبد سهام - مدل مخلوط - بهینه سازی قوی؛ یادگیری بیزی - ارزش در معرض خطر شرطی
کلمات کلیدی انگلیسی
C11; C61; G11Portfolio selection; Mixture model; Robust optimization; Bayesian learning; Conditional value-at-risk
پیش نمایش مقاله
پیش نمایش مقاله  مدیریت پرتفوی با نیرومندی در هر دو بخش پیش بینی و تصمیم گیری: یک رویکرد یادگیری مبتنی بر مدل مخلوط

چکیده انگلیسی

We develop in this paper a novel portfolio selection framework with a feature of double robustness in both return distribution modeling and portfolio optimization. While predicting the future return distributions always represents the most compelling challenge in investment, any underlying distribution can be always well approximated by utilizing a mixture distribution, if we are able to ensure that the component list of a mixture distribution includes all possible distributions corresponding to the scenario analysis of potential market modes. Adopting a mixture distribution enables us to (1) reduce the problem of distribution prediction to a parameter estimation problem in which the mixture weights of a mixture distribution are estimated under a Bayesian learning scheme and the corresponding credible regions of the mixture weights are obtained as well and (2) harmonize information from different channels, such as historical data, market implied information and investors׳ subjective views. We further formulate a robust mean-CVaR portfolio selection problem to deal with the inherent uncertainty in predicting the future return distributions. By employing the duality theory, we show that the robust portfolio selection problem via learning with a mixture model can be reformulated as a linear program or a second-order cone program, which can be effectively solved in polynomial time. We present the results of simulation analyses and primary empirical tests to illustrate a significance of the proposed approach and demonstrate its pros and cons.