دانلود مقاله ISI انگلیسی شماره 91087
ترجمه فارسی عنوان مقاله

استراتژی مدیریت انرژی بهینه در زمان واقعی سازگار بر اساس بهینه سازی عوامل معادل برای خودروی الکتریکی هیبریدی پلاگین

عنوان انگلیسی
Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
91087 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 203, 1 October 2017, Pages 883-896

ترجمه کلمات کلیدی
وسیله نقلیه الکتریکی هیبریدی پلاگین، استراتژی مدیریت انرژی، بهینه سازی زمان واقعی بهینه سازی ذرات وزن خطی، تقسیم چرخه رانندگی،
کلمات کلیدی انگلیسی
Plug-in hybrid electric vehicle; Energy management strategy; Real-time optimization; Linear weight particle swarm optimization; Driving cycle segmentation;
پیش نمایش مقاله
پیش نمایش مقاله  استراتژی مدیریت انرژی بهینه در زمان واقعی سازگار بر اساس بهینه سازی عوامل معادل برای خودروی الکتریکی هیبریدی پلاگین

چکیده انگلیسی

Plug-in hybrid electric vehicle (PHEV) is one of the most promising products to solve the problem about air pollution and energy crisis. Considering the characteristics of urban bus route, maybe a fixed-control-parameter control strategy for PHEV cannot perfectly match the complicated variation of driving conditions, and as a result the ideal vehicle fuel economy would not be obtained. Therefore, it is of great significance to develop an adaptive real-time optimal energy management strategy for PHEV by taking the segment characteristics of driving cycles into consideration. In this study, a novel energy management strategy for Plug-in hybrid electric bus (PHEB) is proposed, which optimizes the equivalent factor (EF) of each segment in the driving cycle. The proposed strategy includes an offline part and an online part. In the offline part, the driving cycles are divided into segments according to the actual positions of bus stops, the EF of each segment is optimized by linear weight particle swarm optimization algorithm with different initial states of charge (SOC). The optimization results of EF are then converted into a 2-dimensional look up table, which can be used to make real-time adjustments to online control strategy. In the online part, the optimal instantaneous energy distribution is obtained in this hybrid powertrain. Finally, the proposed strategy is verified with simulation and hardware in the loop tests, and three kinds of commonly used control strategies are adopted for comparison. Results show when the initial SOC is 90%, the fuel economy with the proposed strategy can be improved by 15.93% compared with that of baseline strategy, and when the initial SOC is 60%, this value is 16.02%. The proposed strategy may provide theoretical support for control optimization of PHEV.