دانلود مقاله ISI انگلیسی شماره 95349
ترجمه فارسی عنوان مقاله

برنامه ریزی منابع فازی متوسط ​​برای خدمات داده های ابر مجازی را متحول می کند

عنوان انگلیسی
Moving average fuzzy resource scheduling for virtualized cloud data services
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
95349 2017 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Standards & Interfaces, Volume 50, February 2017, Pages 251-257

ترجمه کلمات کلیدی
پردازش ابری، مرکز اطلاعات، برنامه ریزی منابع، حداکثر حداقل فازی، ماشین مجازی،
کلمات کلیدی انگلیسی
Cloud computing; Data center; Resource scheduling; Max Min Fuzzy; Virtual machine;
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی منابع فازی متوسط ​​برای خدمات داده های ابر مجازی را متحول می کند

چکیده انگلیسی

Cloud computing offers simplified system maintenance and scalable resource management with Virtual Machines (VMs). Users access resources of data centers by allocating VMs to hosts. Therefore, to improve the quality of cloud computing environment, not only the conventional multi Quality of Service (QoS) be satisfied, but also specific importance has to be made on certain metrics such as the system accessibility and resource scheduling in a cooperative and dynamic manner. This paper proposes a method called, Moving Average-based Fuzzy Resource Scheduling (MV-FRS) for virtualized cloud environment to optimize the scheduling of resources through virtual machines. Initially, the MV-FRS method starts by predicting the resource (i.e. bandwidth, memory and processing cycle) requirements. Then a measure of relationships between availability of resources and the requirements of resources are made. Finally, a fuzzy control theory is designed to accomplish system accessibility between user cloud requirements and cloud users resources availability. The simulations results demonstrate that the MV-FRS method is able to reduce the total waiting time of cloud user resource requirements and also ensure the feasibility and effectiveness of the overall system accessibility in terms of average success rate and resource usage when running in a cloud computing environment.